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ABSTRACT 

The most dominant problem in the survey sampling is to obtain the better ratio 
estimators for the estimation of population mean or population variance. 
Estimation theory is enhanced by using the auxiliary information in order to 
improve on designs, precision and efficiency of estimators. A modified class of 
ratio estimator is suggested in this paper to estimate the population mean. 
Expressions for the bias and the mean square error of the proposed estimators 
are obtained. Both analytical and numerical comparison has shown the suggested 
estimator to be more efficient than some existing ones. The bias of the suggested 
estimator is also found to be negligible for the population under consideration, 
indicating that the estimator is as good the regression estimator and better than 
the other estimators under consideration. 
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simple random sampling, efficiency. 
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1. Introduction 

In sample surveys, auxiliary information on the finite population under study is 
quite often available from previous experience, census or administrative 
databases. The sampling literature describes different procedures for using 
auxiliary information to improve the sampling design and/or obtain more efficient 
estimators. The use of auxiliary information at the estimation stage has been dealt 
at great dealt at great length for improving estimation in sample surveys. In 
sample surveys, auxiliary information is used at selection as well as estimation 
stages to improve the design as well as obtaining more efficient estimators. 

Increased precision can be obtained when the study variable Y  is highly 

correlated with auxiliary variable X . 
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Usually, in a class of efficient estimators, the estimators with minimum 
variance or mean square error is regarded as the most efficient estimator. A good 
estimator can also be described by the value of its bias. An estimator with 
minimum absolute bias is regarded as a better estimator among others in the 
class (Rajesh et al., 2011). 

When the population mean of an auxiliary variable is known, so many 
estimators for the population parameters of study variable have been discussed in 
literature. The literature on survey sampling describes a great variety of 
techniques for using auxiliary information by means of ratio, product and 
regression methods. 

If the regression line of the character of interest Y  on the auxiliary variable, 

X  is through the origin and when correlation between study and auxiliary 
variables is positive (high), then the ratio estimate of mean or total may be used 
(Cochran 1940). 

On the other hand, if the regression line used for the estimate does not pass 
through the origin but makes an intercept along the y-axis, the regression 
estimation is used (Okafor, 2002). Furthermore, when correlation between study 
variable on the auxiliary variable passes through a suitable neighbourhood of the 
origin, in which case, the efficiencies of these estimators are almost equal. When 

the population parameters of the auxiliary variable X  such as population mean, 
coefficient of variation, coefficient of kurtosis, coefficient of skewness, median are 
known, a number of modified estimators such as modified ratio estimators, 
modified product estimators and modified linear regression estimators have been 
proposed and is widely acceptable in the literature. 

This paper is another attempt in solving this problem. An alternative ratio 

estimator for population mean of the study variable Y  (see Sharma and Singh 
(2014,15), which is more efficient than some of the existing estimators is 

suggested using the information on one auxiliary variable, X , that is highly 
correlated with the study variable. 

2.  Review of the existing estimators 

To enhance effective comparison, we summarize below some existing 
estimators, their biases and mean square errors. 

Consider a finite population of N  distinct and identifiable units 

}...,,,,{ 321 NGGGGG  . Let a sample of size n  be drawn from the population 

by simple random sampling without replacement. Suppose that interest is to 

obtain a ratio estimate of the mean of a random variable Y  from the sample 

using a related variable X  as supplementary information and assuming that the 

total of X  is known from sources outside the survey. 
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Table 1.  Some existing estimators, their biases and mean square errors  

S/N Estimator Bias Mean square error 
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variables are respectively defined wherever they appear. 

3.  Suggested estimator 

The proposed ratio estimator is obtained by forming linear combination of 
Subramani and Kumarapandiyan (2012) and Kadilar and Cingi (2004) estimators 
as shown below: 
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3.1. Bias and mean square error of the proposed estimator 

To obtain the approximate expression for the bias and the mean squared 
error for the proposed ratio estimator, let 
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By Taylor Series approximation up to order 2, the expression becomes 
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The expression for the bias of this estimator to first order approximation is 

obtained as follows: 
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3.2. Optimal conditions for the proposed estimator 

To obtain the value of   that minimizes the MSE, we take partial derivative of 

equation (5) with respect to   and equate to zero as follows: 
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Substituting for (6) in (5) gives the optimal MSE for pry  as: 
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4. Efficiency comparison 

In order to compare the efficiency of the various existing estimators with that 
of proposed estimators, we require the expressions of mean square error of these 
estimators, up to first order approximation. An analytical comparison of the 
proposed estimator with three of the existing estimators namely: the classical, 
Subramani and Kumarapandiyan (2012) and Kadilar and Cingi (2004) estimators 
are carried out. 

4.1.  Efficiency comparison of proposed and classical    

In this section, the analytical condition under which the proposed estimator 
will be more efficient than classical ratio estimator is established. 
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Since the expression in the square bracket is always positive, we conclude 
that the proposed estimator will always be more efficient than the classical ratio 
estimator. 

4.2.  Efficiency comparison of proposed and Subramani and 
 Kumarapandiyan 

)]2([
1

)]1([
1

)()( 222222  





 aaCCY
n

f
CY

n

f
yMSEyMSE xyySKpr

                                       ]
2

[
1 2222
















x

y

xyy
C

C
aaCCCY

n

f 
 

                                        ]
2

[
1 2222
















x

y

xy
C

C
aaCCY

n

f 
  



STATISTICS IN TRANSITION new series, December 2019 

 

187 

                            











 ]2[
1 2222  aaCCY

n

f
xx

                                   (9) 

Therefore, for the proposed estimator to be more efficient than Yan and Tian 
(2010), the terms in the second bracket must be positive. This implies that: 
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4.3.  Efficiency comparison of proposed and Kadilar and Cingi 
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Since the expression in the square bracket of equation (11) is always positive, 
it therefore means that the proposed estimator will always be more efficient than 
Kadilar and Cingi (2004) estimator of population mean. 

5.  Numerical comparison 

In this section, to study the performance of the estimator presented in this 
work, we consider empirical population. The source of the population is Singh and 
Chaudhary (1986) and the values of requisite population parameters are given. 
We compare the efficiency of the proposed estimator with the existing estimators 
using the known population data. 

Table 2.  Data Statistics for population 

Parameters Population Parameters Population 

N  34 xC  0.7531 

n  20 Md  150 

Y  856.4117 1  1.1823 

X  199.4412 BUCC xy  )(  0.50620 

  0.4453 MdXXa   0.58204 

yS  733.1407 YXM   0.23288 

yC  0.8561 xy SSB   2.17333 

xS  150.2150 XYR   4.29406 
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Table 3.  Estimators, biases, MSE and % relative efficiency for population. 

Population 

Estimator MSE 
Bias of the 
estimator 

% Relative 
efficiency 

cly  12557.99 5.658 100.00 

SKy  10236.38 3.293 122.67 

KCy  19977.62 11.457 62.86 

pry  10165.43 -0.069 123.53 

6.  Discussion 

Optimal mean square error (MSE) of the proposed estimators given in 
Equation (7) has the same expression as the MSE of the regression estimator 
which is known to be more efficient than the ratio and the product estimators. The 
comparison of the suggested estimator with the three existing estimators are 
derived analytically and these comparisons show that the suggested estimators 
are more efficient than the classical ratio (1940), Kadilar and Cingi (2004) 
estimators and preferred over the Subramani and Kumarapandiyan (2012) 
estimator when the condition stated in the equation (10) is satisfied.  

From empirical study, results in the Table 3 reveals that our suggested 
estimators has lower mean square error than the classical ratio (1940), Kadilar 
and Cingi (2004) and Subramani and Kumarapandiyan (2012) in the population 
under consideration, showing that the suggested estimator is more efficient than 
all the other estimators under consideration. This due to the fact that the 
suggested estimator is equally as efficient as the regression estimator and 
confirms Cochran (1940), Robson (1957), Murthy (1967) and Perri (2005) 
assertion that the regression estimator is generally more efficient than the ratio 
and product estimators. 

Analyses of biases have also shown that the suggested estimator have 
smallest bias than the all other estimators under consideration. From the Table 3, 
also from bias point of view, bias is negligible and agrees with the assertion of the 
Okafor (2002) that any estimator with relative bias less than 10% is considered to 
have a negligible bias. 

7. Conclusion 

Since the from the equation (7) the suggested estimator gives the same 
precision as the regression estimator and is consistently better in terms of bias 
and efficiency then  the three estimators under consideration, the suggested 
estimator can always be used as an alternative to the regression estimator and 
gives a better replacement to some existing ratio estimators. 
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